

HEATING TAPE TYPE FBT

SELF REGULATING HEATING TAPE – FOR FROST PROTECTION AND TEMPERATURE MAINTAINING

FBT is a parallel resistance, cut to length on site self regulating heating tape cable designed for frost protection, process pipework maintaining and hot water temperature maintaining.

Type FBT heating tape adjusts heat output to equal the heat loss from the pipe work. As pipe temperature falls under no-flow conditions or due to decreases in external or internal temperature, FBT increases output. As the pipe temperature increases under flow conditions or as a result of increasing external or internal temperature so output from FBT decreases.

FBT can be used with the 'DOMOCLICK' fast connection system for terminating and jointing on site.

CONSTRUCTION •

The heating tape has a core comprising two bus-wire conductors contained within an extruded semi-conductive self limiting heater core with an outer insulating polyolefin sheath.

The tape has an earth protection screen in the form of a Foil Jacket covering a multi strand earth lead.

The tape is finished with a further protective thermoplastic outer sheath over the earth screen.

RANGE

TYPE	VOLTS	WATT/M @ 10°C	MAX CIRCUIT LENGTH (m)	
ITPE	VOLIS	WATT/W @ 10 C	16A CB	25A CB
FBT 10	230	10	177	177
FBT 20	230	20	109	129
FBT 30	230	30	83	113
FBT 40	230	40	57	89

Thickness

Over sheath

Braid

Weight

3.2 mm

Foil jacket with multi strand Earth lead

Thermo-plastic elastomer

6kg/100m unbraided

7.8kg/100m braided

SPECIFICATION

Core

Conductors Copper stranded flexible

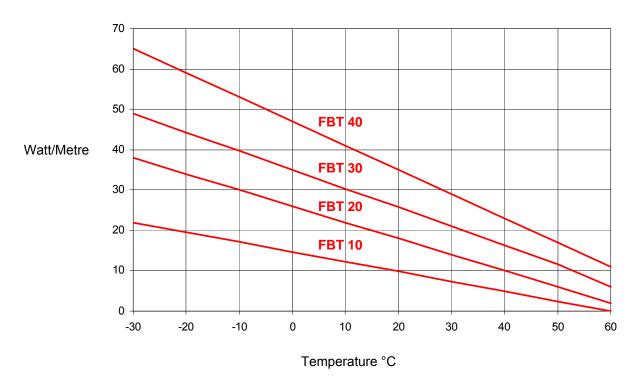
1.23mm².

Semi-conductive Polymer.

Outer Sheath Polyolefin. Width 10.1mm.

n 0000 Unanaraiaad

Withstand Temp 80°C Unenergised


65°C Energised

ESH Trace Heating Ltd, Unit 10, Hortonwood 33, Telford, Shropshire TF1 7EX Telephone: (01952) 604033 Fax: (01952) 608122

E-mail: enquiries@eshltd.com Web site: www.eshltd.com

OUTPUT

Circuit Breaker type C to EN60898

HEAT LOSSES'

To calculate heat loss per metre of pipe:-

Heat losses W/m = $\Delta t \times k_e \times Loss$ Factor where:-

 Δt = Pipe temp. – Ambient temp. k_e = Thermal conductivity.

Loss Factor (From BS 6351)

Pipe NB (mm)	Thermal Insulation Thickness (mm)			
	25	38	50	
13	5.16	4.13	3.58	
25	6.91	5.36	4.56	
38	8.74	6.63	5.54	
50	10.28	7.69	6.36	
75	13.90	10.15	8.24	
100	17.08	12.30	9.88	
150	23.82	16.82	13.30	

Thermal Conductivity (ke) for Mineral/Glass Fibre

Δt°C	30	40	60
K_e	0.034	0.035	0.036

To comply with BS 6351 allowance should be taken of maximum heater resistance tolerance (\pm 10%) and voltage variation (\pm 6%) = $\frac{1.1}{(0.94)^2}$ = 1.25 x Heat Loss.

A further design factor of 10% may be added.

